- 信号与系统课程内容 - 卷积积分的导出和图解法 - 英文名称:Convolution Integral - 学生对卷积的态度 - 抗议卷积学习难度高 - 实际情况分析 - 学习卷积的原因 - 研究线性时不变系统(LTI系统) - 输入与输出关系(激励与响应) - 经典法求解微分方程的局限性 - 输入激励复杂时难以求特解 - 卷积积分用于求零状态响应 - 卷积积分的实现方法 - 分解激励信号 - 引入窄脉冲信号 - 强度为窄脉冲面积 - 激励信号近似为窄脉冲线性组合 - 数学逼近 - DT趋近于0时,折线逼近曲线 - 积分表示激励信号 - 卷积积分的形式 - 冲击信号的线性叠加 - 零状态响应的求解 - 冲击信号过系统的响应为冲击响应 - 平移、乘法、叠加性质 - 卷积积分的定义式 - F1T和F2T的卷积积分 - 应用:求零状态响应 - 卷积积分的计算方法 - 解析法 - 数值计算法(Matlab仿真) - 查表法 - 图解法 - 步骤 - 换元 - 翻转平移 - 相乘 - 积分 - 示例:矩形脉冲信号卷积 - 不等宽矩形脉冲结果为等腰梯形 - 起点和终点为两信号起点与终点之和 - 思考问题 - 卷积积分是否总是存在 - 两个等宽或高度不同的矩形脉冲卷积结果 - 小结 - 卷积积分的定义与应用 - 图解法计算卷积积分